A MONOIDAL STRUCTURE ON THE CATEGORY OF RELATIVE HOPF MODULES
نویسندگان
چکیده
منابع مشابه
On the Cohomology of Relative Hopf Modules
Let H be a Hopf algebra over a field k, and A an Hcomodule algebra. The categories of comodules and relative Hopf modules are then Grothendieck categories with enough injectives. We study the derived functors of the associated Hom functors, and of the coinvariants functor, and discuss spectral sequences that connect them. We also discuss when the coinvariants functor preserves injectives.
متن کاملWhen does a category built on a lattice with a monoidal structure have a monoidal structure?
In a word, sometimes. And it gets harder if the structure on L is not commutative. In this paper we consider the question of what properties are needed on the lattice L equipped with an operation * for several different kinds of categories built using Sets and L to have monoidal and monoidal closed structures. This works best for the Goguen category Set(L) in which membership, but not equality,...
متن کاملThe Hopf modules category and the Hopf equation
Let (A,∆) be a Hopf-von Neumann algebra and R be the unitary fundamental operator on A defined by Takesaki in [28]: R(a⊗ b) = ∆(b)(a⊗ 1). Then R12R23 = R23R13R12 (see lemma 4.9 of [28]). This operator R plays a vital role in the theory of duality for von Neumann algebras (see [28] or [2]). If V is a vector space over an arbitrary field k, we shall study what we have called the Hopf equation: R1...
متن کاملHopf Modules for Autonomous Pseudomonoids and the Monoidal Centre
In this work we develop some aspects of the theory of Hopf algebras to the context of autonomous map pseudomonoids. We concentrate in the Hopf modules and the Centre or Drinfel’d double. If A is a map pseudomonoid in a monoidal bicategory M , the analogue of the category of Hopf modules for A is an Eilenberg-Moore construction for a certain monad in Hom(M op,Cat). We study the existence of the ...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra and Its Applications
سال: 2012
ISSN: 0219-4988,1793-6829
DOI: 10.1142/s0219498811005506