A MONOIDAL STRUCTURE ON THE CATEGORY OF RELATIVE HOPF MODULES

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Cohomology of Relative Hopf Modules

Let H be a Hopf algebra over a field k, and A an Hcomodule algebra. The categories of comodules and relative Hopf modules are then Grothendieck categories with enough injectives. We study the derived functors of the associated Hom functors, and of the coinvariants functor, and discuss spectral sequences that connect them. We also discuss when the coinvariants functor preserves injectives.

متن کامل

When does a category built on a lattice with a monoidal structure have a monoidal structure?

In a word, sometimes. And it gets harder if the structure on L is not commutative. In this paper we consider the question of what properties are needed on the lattice L equipped with an operation * for several different kinds of categories built using Sets and L to have monoidal and monoidal closed structures. This works best for the Goguen category Set(L) in which membership, but not equality,...

متن کامل

The Hopf modules category and the Hopf equation

Let (A,∆) be a Hopf-von Neumann algebra and R be the unitary fundamental operator on A defined by Takesaki in [28]: R(a⊗ b) = ∆(b)(a⊗ 1). Then R12R23 = R23R13R12 (see lemma 4.9 of [28]). This operator R plays a vital role in the theory of duality for von Neumann algebras (see [28] or [2]). If V is a vector space over an arbitrary field k, we shall study what we have called the Hopf equation: R1...

متن کامل

Hopf Modules for Autonomous Pseudomonoids and the Monoidal Centre

In this work we develop some aspects of the theory of Hopf algebras to the context of autonomous map pseudomonoids. We concentrate in the Hopf modules and the Centre or Drinfel’d double. If A is a map pseudomonoid in a monoidal bicategory M , the analogue of the category of Hopf modules for A is an Eilenberg-Moore construction for a certain monad in Hom(M op,Cat). We study the existence of the ...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra and Its Applications

سال: 2012

ISSN: 0219-4988,1793-6829

DOI: 10.1142/s0219498811005506